Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 535: 108991, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065042

RESUMO

We present the isolation and structural characterization of a novel nonionic dirhamnolipid methyl ester produced by the bacterium Burkholderia lata. The structure and the absolute configuration of the isolated dirhamnolipid bearing a symmetrical C14-C14 methyl ester chain were thoroughly investigated through chemical degradation and spectroscopic methods including 1D and 2D NMR analysis, HR-ESI-TOF-MS, chiral GC-MS, and polarimetry. Our work represents the first mention in the literature of a rhamnolipid methyl ester from Burkholderia species.


Assuntos
Burkholderia , Glicolipídeos , Glicolipídeos/química , Burkholderia/química , Cromatografia Gasosa-Espectrometria de Massas , Ésteres/metabolismo
2.
PeerJ ; 9: e12424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760396

RESUMO

BACKGROUND: Hyphomicrobium nitrativorans strain NL23 and Methylophaga nitratireducenticrescens strain JAM1 are the principal bacteria involved in the denitrifying activities of a methanol-fed, fluidized-bed marine denitrification system. Strain NL23 possesses the complete denitrification pathway, but cannot grow under marine conditions in pure cultures. Strain JAM1 is a marine bacterium that lacks genes encoding a dissimilatory nitrite (NO2 -) reductase and therefore cannot reduce NO2 -. Here, we report the characterization of some of their physiological traits that could influence their co-habitation. We also perform co-cultures to assess the potential synergy between the two strains under marine and denitrifying conditions. METHODOLOGY: Anoxic planktonic pure cultures of both strains were grown with different concentrations of nitrate (NO3 -). Anoxic planktonic co-cultures could only be cultured on low NaCl concentrations for strain NL23 to grow. Biofilm co-cultures were achieved in a 500-mL bioreactor, and operated under denitrifying conditions with increasing concentrations of NaCl. NO3 - and NO2 - concentrations and the protein content were measured to derive the denitrification rates. The concentrations of both strains in co-cultures were determined by quantitative PCR (qPCR). Ectoine concentration was measured by mass spectrometry in the biofilm co-culture. The biofilm was visualized by fluorescence in situ hybridization. Reverse-transcription-qPCR and RNA-seq approaches were used to assess changes in the expression profiles of genes involved in the nitrogen pathways in the biofilm cultures. RESULTS: Planktonic pure cultures of strain JAM1 had a readiness to reduce NO3 - with no lag phase for growth in contrast to pure cultures of strain NL23, which had a 2-3 days lag phase before NO3 - starts to be consumed and growth to occur. Compared to strain NL23, strain JAM1 has a higher µmax for growth and higher specific NO3 - reduction rates. Denitrification rates were twice higher in the planktonic co-cultures than those measured in strain NL23 pure cultures. The biofilm co-cultures showed sustained denitrifying activities and surface colonization by both strains under marine conditions. Increase in ectoine concentrations was observed in the biofilm co-culture with the increase of NaCl concentrations. Changes in the relative transcript levels were observed in the biofilm culture with genes encoding NapA and NapGH in strain NL23. The type of medium had a great impact on the expression of genes involved in the N-assimilation pathways in both strains. CONCLUSIONS: These results illustrate the capacity of both strains to act together in performing sustainable denitrifying activities under marine conditions. Although strain JAM1 did not contribute in better specific denitrifying activities in the biofilm co-cultures, its presence helped strain NL23 to acclimate to medium with NaCl concentrations >1.0%.

3.
Chem Sci ; 12(21): 7533-7546, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34163844

RESUMO

Rhamnolipids are a specific class of microbial surfactants, which hold great biotechnological and therapeutic potential. However, their exploitation at the industrial level is hampered because they are mainly produced by the opportunistic pathogen Pseudomonas aeruginosa. The non-human pathogenic bacterium Pantoea ananatis is an alternative producer of rhamnolipid-like metabolites containing glucose instead of rhamnose residues. Herein, we present the isolation, structural characterization, and total synthesis of ananatoside A, a 15-membered macrodilactone-containing glucolipid, and ananatoside B, its open-chain congener, from organic extracts of P. ananatis. Ananatoside A was synthesized through three alternative pathways involving either an intramolecular glycosylation, a chemical macrolactonization or a direct enzymatic transformation from ananatoside B. A series of diasteroisomerically pure (1→2), (1→3), and (1→4)-macrolactonized rhamnolipids were also synthesized through intramolecular glycosylation and their anomeric configurations as well as ring conformations were solved using molecular modeling in tandem with NMR studies. We show that ananatoside B is a more potent surfactant than its macrolide counterpart. We present evidence that macrolactonization of rhamnolipids enhances their cytotoxic and hemolytic potential, pointing towards a mechanism involving the formation of pores into the lipidic cell membrane. Lastly, we demonstrate that ananatoside A and ananatoside B as well as synthetic macrolactonized rhamnolipids can be perceived by the plant immune system, and that this sensing is more pronounced for a macrolide featuring a rhamnose moiety in its native 1 C 4 conformation. Altogether our results suggest that macrolactonization of glycolipids can dramatically interfere with their surfactant properties and biological activity.

4.
Carbohydr Res ; 507: 108373, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34157641

RESUMO

Burkholderia gladioli is a Gram-negative bacterium that biosynthesizes a cocktail of potent antimicrobial compounds, including the antifungal phenolic glycoside sinapigladioside. Herein, we report the total synthesis of the proposed structures of gladiosides I and II, two structurally related phenolic glycosides previously isolated from B. gladioli OR1 cultures. Importantly, the physical and analytical data of the synthetic compounds were in significant discrepancies with the natural products suggesting a misassignment of the originally proposed structures. Furthermore, we have uncovered an acid-catalyzed fragmentation mechanism converting the α,ß-unsaturated methyl carbamate-containing gladioside II into the aldehyde-containing gladioside I. Our results lay the foundation for the expeditious synthesis of derivatives of these Burkholderia-derived phenolic glycosides, which would enable to decipher their biological roles and potential pharmacological properties.


Assuntos
Burkholderia gladioli , Antibacterianos , Antifúngicos , Testes de Sensibilidade Microbiana
5.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33008823

RESUMO

The bacterium Burkholderia thailandensis produces an arsenal of secondary metabolites that have diverse structures and roles in the ecology of this soil-dwelling bacterium. In coculture experiments, B. thailandensis strain E264 secretes an antimicrobial that nearly eliminates another soil bacterium, Bacillus subtilis strain 168. To identify the antimicrobial, we used a transposon mutagenesis approach. This screen identified antimicrobial-defective mutants with insertions in the hmqA, hmqC, and hmqF genes involved in biosynthesis of a family of 2-alkyl-4(1H)-quinolones called 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs), which are closely related to the Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs). Insertions also occurred in the previously uncharacterized gene BTH_II1576 ("hmqL"). The results confirm that BTH_II1576 is involved in generating N-oxide derivatives of HMAQs (HMAQ-NOs). Synthetic HMAQ-NO is active against B. subtilis 168, showing ∼50-fold more activity than HMAQ. Both the methyl group and the length of the carbon side chain account for the high activity of HMAQ-NO. The results provide new information on the biosynthesis and activities of HMAQs and reveal new insight into how these molecules might be important for the ecology of B. thailandensisIMPORTANCE The soil bacterium Burkholderia thailandensis produces 2-alkyl-4(1H)-quinolones that are mostly methylated 4-hydroxyalkenylquinolines, a family of relatively unstudied metabolites similar to molecules also synthesized by Pseudomonas aeruginosa Several of the methylated 4-hydroxyalkenylquinolines have antimicrobial activity against other species. We show that Bacillus subtilis strain 168 is particularly susceptible to N-oxidated methylalkenylquinolines (HMAQ-NOs). We confirmed that HMAQ-NO biosynthesis requires the previously unstudied protein HmqL. These results provide new information about the biology of 2-alkyl-4(1H)-quinolones, particularly the methylated 4-hydroxyalkenylquinolines, which are unique to B. thailandensis This study also has importance for understanding B. thailandensis secondary metabolites and has implications for potential therapeutic development.


Assuntos
Anti-Infecciosos/farmacologia , Burkholderia/metabolismo , Quinolonas/metabolismo , Metilação
6.
J Nat Prod ; 83(7): 2145-2154, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32631063

RESUMO

The Burkholderia genus offers a promising potential in medicine because of the diversity of biologically active natural products encoded in its genome. Some pathogenic Burkholderia spp. biosynthesize a specific class of antimicrobial 2-alkyl-4(1H)-quinolones, i.e., 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs) and their N-oxide derivatives (HMAQNOs). Herein, we report the synthesis of a series of six HMAQs and HMAQNOs featuring a trans-Δ2 double bond at the C2-alkyl chain. The quinolone scaffold was obtained via the Conrad-Limpach approach, while the (E)-2-alkenyl chain was inserted through Suzuki-Miyaura cross-coupling under microwave radiation without noticeable isomerization according to the optimized conditions. Subsequent oxidation of enolate-protected HMAQs cleanly led to the formation of HMAQNOs following cleavage of the ethyl carbonate group. Synthetic HMAQs and HMAQNOs were evaluated in vitro for their antimicrobial activity against different Gram-negative and Gram-positive bacteria as well as against molds and yeasts. The biological results support and extend the potential of HMAQs and HMAQNOs as antimicrobials, especially against Gram-positive bacteria. We also confirm the involvement of HMAQs in the autoregulation of the Hmq system in Burkholderia ambifaria.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Burkholderia/química , Quinolinas/síntese química , Quinolinas/farmacologia , Antibacterianos/química , Antifúngicos/química , Óxidos/química , Quinolinas/química , Análise Espectral/métodos
7.
Carbohydr Res ; 471: 13-18, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408718

RESUMO

The bacterium Pantoea ananatis was reported to produce glycolipid biosurfactants of unknown structures. Herein, we present the isolation and structural determination of ananatoside A, the main congener of a new family of 15-membered macrodilactone-containing glucolipids. The structure of ananatoside A was elucidated via chemical degradation and spectroscopic methods including 1D/2D NMR analysis, tandem MS/MS, GC-MS, HR-ESI-TOF-MS, MALDI-TOF-MS, and polarimetry. Computational methods were used to predict the most abundant conformers of ananatoside A.


Assuntos
Glicolipídeos/química , Lactonas/química , Pantoea/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Glicolipídeos/isolamento & purificação , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Pantoea/química , Pantoea/metabolismo , Espectrometria de Massas em Tandem
8.
Bioorg Med Chem Lett ; 19(8): 2310-4, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19285391

RESUMO

The concise synthesis, via a stepwise glycosylation approach, of lupeol, betulin and betulinic acid O-glycosides bearing a chacotriosyl moiety at the C-3 position is described. All neosaponins as well as their rearrangement products of the germanicane-type were evaluated in vitro for their anticancer and haemolytic activities. Although betulinic acid and betulin 3beta-O-chacotriosides were neither cytotoxic nor haemolytic, their rearrangement products allobetulin and 28-oxoallobetulin 3beta-O-chacotriosides (9 and 10) exhibited a cytotoxicity profile up to fourfold superior to betulinic acid against human breast (MCF7) and prostate (PC-3) adenocarcinomas cell lines (IC(50)=10-18 microM). One important result was that only chacotriosides featuring non-polar functions at the C-28 position (6, 9 and 10) exerted a haemolytic activity against red blood cells.


Assuntos
Citotoxinas/química , Hemolíticos/química , Saponinas/química , Triterpenos/química , Animais , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Hemolíticos/farmacologia , Humanos , Saponinas/farmacologia , Ovinos , Triterpenos/farmacologia , Tropanos/química , Tropanos/farmacologia
9.
Phytochemistry ; 70(2): 228-36, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19136127

RESUMO

alpha-Bisabolol beta-d-fucopyranoside, a cytotoxic naturally occurring compound, was efficiently synthesized along with five other alpha-bisabolol glycosides (beta-d-glucoside, beta-d-galactoside, alpha-d-mannoside, beta-d-xyloside and alpha-l-rhamnoside). Glycosidation of alpha-bisabolol was performed using Schmidt's inverse procedure and provided excellent yields (83-95%). Cytotoxicity was evaluated against a broad panel of cancerous cell lines including human and rat glioma (U-87, U-251 and GL-261) since the anticancer activity of alpha-bisabolol was previously demonstrated against brain tumor cell lines. The addition of a sugar moiety markedly increased alpha-bisabolol cytotoxicity in most cases. Among the synthesized glycosides, alpha-bisabolol alpha-l-rhamnopyranoside exhibited the strongest cytotoxic activity with IC(50) ranging from 40 to 64muM. According to ADME in silico predictions, this glycoside closely respects physicochemical parameters necessary to cross the blood-brain barrier passively.


Assuntos
Produtos Biológicos/síntese química , Produtos Biológicos/toxicidade , Fucose/síntese química , Fucose/toxicidade , Produtos Biológicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Fucose/análogos & derivados , Fucose/química , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...